
J
H
E
P
0
4
(
2
0
0
7
)
0
4
2

Published by Institute of Physics Publishing for SISSA

Received: February 16, 2007

Revised: March 20,2007

Accepted: April 2, 2007

Published: April 11, 2007

Quantizing strings in de Sitter space

Miao Li,abc Wei Songab and Yushu Songab

aInterdisciplinary Center for Theoretical Study,

University of Science and Technology of China,

Hefei, Anhui 230026, China
bInstitute of Theoretical Physics, Academia Sinica,

Beijing 100080, China
cInterdisciplinary Center of Theoretical Studies, Academia Sinica,

Beijing 100080, China

E-mail: mli@itp.ac.cn, wsong@itp.ac.cn, yssong@itp.ac.cn

Abstract: We quantize a string in the de Sitter background, and we find that the mass

spectrum is modified by a term which is quadratic in oscillating numbers, and also propor-

tional to the square of the Hubble constant.

Keywords: Bosonic Strings, String theory and cosmic strings.

c© SISSA 2007 http://jhep.sissa.it/archive/papers/jhep042007042/jhep042007042.pdf

mailto:mli@itp.ac.cn
mailto:wsong@itp.ac.cn
mailto:yssong@itp.ac.cn
http://jhep.sissa.it/stdsearch


J
H
E
P
0
4
(
2
0
0
7
)
0
4
2

Contents

1. Introduction 1

2. Action and gauge choice 2

3. Quantization 5

4. Comparison with earlier results 9

5. Discussions and conclusion 10

A. Mode creation 11

1. Introduction

The progress of the string program as a theory of quantum gravity and other interactions

is currently impeded by a fundamental difficulty, namely we do not know how to formulate

string theory in a time-dependent background in general, and how to understand many

issues related to cosmology such as the origin of our universe and the nature of dark energy

in particular. This baffling situation leads to lots of debates about whether string theory

is the correct theory of nature, and whether string theory has any predictive power if there

exists a vast landscape of meta-stable vacua. It goes without saying that string theory

has been tremendously successful in resolving some of deeper conceptual problems such

as whether gravity is compatible with quantum mechanics, but only in some unrealistic

backgrounds such as a flat background and an anti-de Sitter background. In some cases,

we even have a non-perturbative formulation, for instance, a CFT is a non-perturbative

theory in the AdS/CFT duality. Nevertheless, until we have a theory for time-evolving

backgrounds, string theory can not claim to be the theory of our universe.

We shall not try to attack the ultimately difficult problem of formulating string theory

in a general or even an “on-shell” time-dependent background in this note. Our purpose

is rather pragmatic, we will try to work out part of string quantization in a de Sitter

background, with applications to inflation as well as to a later universe dominated by dark

energy in mind. For instance, we would like to know how different the spectrum of a string

in the de Sitter space is from that in the flat spacetime, whether this spectrum enables

string production during inflation. If not, whether strings are created at the end of inflation

when the Hubble constant undergoes transition from a constant to a decreasing function.

In the later universe such as the current epoch, our universe is again dominated by energy

of almost constant density. Although a cosmic string, if exists, is largely governed by
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classic dynamics, it is certainly of interest to know whether its spectrum is modified in

some extremal limit.

The answers to the above questions seem to be yes. As we shall see, the dynamic

equation for the field corresponding to a fixed state contains a new term induced by “string

mode creation” (to be explained shortly). This term depends on the Hubble constant, thus

it renders string creation possible in the end of inflation. This term begins to be comparable

to the usual term in the “mass” spectrum when the oscillation numbers are large enough.

We put mass into quotation marks since there is no notion of mass in a de Sitter space.

Note that, we will exclusively deal with “small” string states in this paper, by a small

string we mean that the string modes are mostly oscillating. It is known that cosmic

strings are “long” strings, namely the dominating modes are not oscillating modes so that

the major part of the string co-moves with the expansion of the universe.

There is a series of papers on first quantizing string in de Sitter space by de Vega

and Sánchez and their collaborators, see for instance [1]–[6]. In their work, they fix all

the degrees of freedom of the world sheet metric, and find an exact classical solution. To

quantize, they propose two methods, one is to quantize the fluctuation around an exact

solution of the center of mass [1], and the other is to propose a quantization condition

semiclassically [2].

In this note, we propose a new approach. We leave one degree of the world sheet

metric unfixed, and then eliminate it by a constraint. To the leading order, our result

agrees with that of de Vega and Sánchez. However, there is a subtle difference: our method

is approximate in choosing the gauge. Despite of this, the answer is exact once the gauge

is chosen. The most important consequence of our result is that the mode creation and

annihilation operators are still time-dependent even after diagonalization. Thus, a state

created by these operators is itself time-dependent, and this will have some effects in the

dynamic equation for the corresponding field.

We will present our approach in the next section and carry out the first quantization

in section 3. We will discuss possible applications to inflation and obtain some conclusions

in the last section. A discussion on the mode creation on a string is left in the appendix.

2. Action and gauge choice

We start with the Polyakov action in a general background

S = − 1

4πα′

∫

dτ dσ
√
−hhab ∂aX

µ ∂bX
ν Gµν(X) , (2.1)

where h = det hab (a, b run over values (τ, σ).), 0 ≤ σ ≤ 2π, and Gµν is the string frame

metric. Here we suppose that the dilaton is constant, and Gµν (µ, ν run over 0, 1, 2, 3. )

is the metric of de Sitter space in comoving frame

ds2 = −dt2 + e2Ht (dxi)2 , i = 1, 2, 3 . (2.2)

Of course, if we naively take (2.1) as the whole story, then in the background (2.2) a

quantum string is not well-defined, since we do not have a two dimensional conformal field
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theory. We shall assume that there is a hidden sector making the whole world-sheet action

conformally invariant (as an example, in a merely AdS space, the bosonic string action is

not conformally invariant, and we need another sector from a sphere as well some other

terms due to flux and fermionic degrees. As for a de Sitter space, we assume a scenario

such as KKLT compactification making the story complete).

By means of the classical world-sheet symmetry, we can set determinant of the world-

sheet metric to −1 after choosing the temporal gauge and diagonalizing world-sheet metric.

Following this strategy, there is only one component of the world sheet metric hσσ left

unfixed, which is non-dynamical. We assume that hσσ depends only on time, then the

target space coordinates Xi can be solved in terms of hσσ . When we quantize the field

Xi, hσσ will be promoted to an operator. In order to obtain the on-shell condition, we

then impose the constraint from the variation of hσσ on physical states. In more detail,

the constraint is the integral of the variation of hσσ due to our assumption.

Now we perform the steps summarized above. By choosing a proper gauge, we can fix

the redundancies in the Polyakov action, and make the equations of motion simple. Set

τ = t , hτσ = 0 , −h = 1 . (2.3)

where t is the comoving time. Under this gauge choice, the action becomes

S =
1

4πα′

∫

dt dσ{−hσσ + e2Ht [hσσ (∂tX
i)2 − h−1

σσ (∂σXi)2]} . (2.4)

There are two independent constraints due to functional variation of hab, that is,

1

4πα′ e2Ht ∂tX
i(t, σ) ∂σXi(t, σ) = 0 , (2.5)

1

8πα′ {−h2
σσ(t, σ) + e2Ht [h2

σσ(t, σ)(∂tX
i(t, σ))2 + (∂σXi(t, σ))2]} = 0 . (2.6)

The equations of motion corresponding to the functional variation of Xµ are

∂t(e
2Ht hσσ(t, σ) ∂tX

i(t, σ)) − e2Ht ∂σ(h−1
σσ (t, σ) ∂σXi(t, σ)) = 0 , (2.7)

∂thσσ(t, σ) + H e2Ht [hσσ(t, σ)(∂tX
i(t, σ))2 − h−1

σσ (t, σ)(∂σXi(t, σ))2] = 0 . (2.8)

The second equation of motion (2.8) comes from the functional variation of X0, which

is non-dynamical according to our gauge choice. This becomes another constraint, but for-

tunately it can be derived from the other three equations. So at last we get two constraints

and three equations of motion (each for one spatial coordinate).

The conjugate momentum of Xi(t, σ) is given by Πi(t, σ) =
1

2πα′ e2Ht hσσ(t, σ) ∂tX
i(t, σ) . The Hamiltonian is then

E =
e2Ht

4πα′

∫

dσ [
hσσ(t, σ)

e2Ht
+ hσσ(t, σ)(∂tX

i(t, σ))2 + h−1
σσ (t, σ) (∂σXi(t, σ))2] (2.9)

' 1

2πα′

∫

dσ hσσ(t, σ) . (2.10)
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In the last step we used (2.6), which is satisfied only by physical states. We use the

symbol ' instead of = to show that the equality is satisfied only by physical states. Hence
1

2πα′

∫

dσhσσ is in fact just the energy of a physical state with respect to comoving time.

For simplicity, we will set α′ = 1 hereafter. hσσ is non-dynamical, and is determined by

Xi(t, σ) through (2.6). If we eliminate hσσ , (2.7) will become nonlinear equations which

is hard to solve. Instead, we will first treat hσσ as an independent variable, solve the

equations of motion for Xi(t, σ) in terms of hσσ and then fix hσσ by (2.6). In order to solve

the equation of motion (2.7), we make an assumption that

hσσ(t, σ) = ω(t). (2.11)

This is the only approximation we execute in this note. For strings oscillating fast, ω(t)

may be viewed as an average of hσσ(σ, t) along σ.

Hereafter we will just write ω instead of ω(t) for simplicity, but keep in mind that ω is

in fact a function of time. Also, we caution that upon quantization, Xi become operators,

so does ω, namely ω is not to be viewed as a usual function.

For physical states, E ' ω is the energy of the string, the equations of motion become

∂t(η
−2 ∂tX

i(t, σ)) − ω−2 η−2 ∂2
σXi(t, σ) = 0 , (2.12)

where η = 1
eHt

√
ω
. A general solution is

Xi(t, σ) = x0 +

∫ t

du η2(u) pi +
∑

m∈Z/{0}
η(t)

[

ai
m(t)

√

2 |λm(t)|
e−i

R

t du λm(u) eimσ

+
ãi

m(t)
√

2|λm(t)|
e−i

R

t du λm(u) e−imσ

]

, (2.13)

ȧi
m(t) =

λ̇m(t)

2λm(t)
ãi
−m(t) e2i

R

t duλm(u), ˙̃a
i
m(t) =

λ̇m(t)

2λm(t)
ai
−m(t) e2i

R

t duλm(u) . (2.14)

where we have definedλm = sgn(m)
√

m2

ω2 − η∂2
t (η−1) =

sgn(m)
√

m2

ω2 − (H + ω̇
2ω )2 − ∂t(

ω̇
2ω ), where the function sgn(m) = 1 for m > 0, and

sgn(m) = −1 for m < 0 . We will work in the situation that λms remain real, which

means that the string is oscillating in time. This is to be dubbed as a small string, since

it is not stretched too much with the expansion of the universe.

The real condition for λm is that m2

ω2 − (H + ω̇
2ω )2 − ∂t(

ω̇
2ω ) > 0. The Hermiticy of

Xi(t, σ) requires that (ai
m)† = ai

−m and (ãi
m)† = ãi

−m. Thus the conjugate momentum of

Xi becomes

Πi(t, σ) =
1

2π
{pi +

∑

m∈Z/{0}
[
η̇(t)

η(t)2
− iλm(t)

η(t)
] [

ai
m(t)

√

2 |λm(t)|
e−i

R

t du λm(u) eimσ

+
ãi

m(t)
√

2|λm(t)|
e−i

R

t du λm(u) e−imσ ]} .
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To quantize, impose the equal time canonical commutation relations

[Xi(t, σ),Xj(t, σ′)] = [Πi(t, σ),Πj(t, σ
′)] = 0 , (2.15)

[Xi(t, σ),Πj(t, σ
′)] = i δi

j δ(σ − σ′) . (2.16)

which are equivalent to imposing the commutation relations

[xi, xj ] = [pi, pj ] = 0 , [xi, pj ] = iδij (2.17)

[ai
m, ãj

n] = 0 , [ai
m, aj

n] =
m

|m|δ
ijδm,−n . (2.18)

Note that ai
m and ãi

m depend on ω implicitly. Thus when we impose (2.18), we have

also promote ω to be an operator, which commutes with other operators including ω̇. To

simplify the notations, we will not distinguish operators and functions explicitly except

that ω, p and N are assumed to be operators when constructing states.

3. Quantization

We now study constraints (2.5), (2.6) and (2.8). (2.8) can be derived from (2.5), (2.6)

together with the equation of motion (2.7). Thus only (2.5) and (2.6) need to be considered.

According to our assumption hσσ(t, σ) = ω(t), the most important parts of these constraints

are their average over σ. Thus the constrains become,

P ≡
∫

dσ

4π
e2Ht ∂tX

i(t, σ) ∂σXi(t, σ)

=
∑

m>0

m

2ω
{ai

−m ai
m − ãi

−m ãi
m} ' 0 , (3.1)

and

H ≡
∫

dσ

8π
{h2

σσ [−1 + e2Ht (∂tX
i(t, σ))2] + e2Ht (∂σXi(t, σ))2} (3.2)

= −ω2

4
+

(pi)2

4 e2Ht
+

∑

m>0,i

ω

4λm
[(

η̇

η
)2 + λ2

m +
m2

ω2
] (ai

−m ai
m + ãi

−m ãi
m + 1)

+
ω

4λm
e−2i

R

t duλm(u) [(
η̇

η
− iλm)2 +

m2

ω2
] ai

m ãi
m

+
ω

4λm
e2i

R

t duλm(u) [(
η̇

η
+ iλm)2 +

m2

ω2
] ai

−m ãi
−m ' 0 . (3.3)

There are also infinitely many constraints corresponding to positve modes of (2.5), (2.6)

in the Fourier expansion in terms of σ. Note that our temporal gauge choice only eliminate

the temporal degrees of freedom. These infinitely many constraints, whose analog in flat

spacetime are the conditions Ln = L̃n = 0, will further eliminate the unphysical degrees of

freedom due to the longitudinal excitations. In this note we will not discuss them in detail,

and will just focus on the mass shell condition, whose analog in flat spacetime is L0 = 0.

One may ask that why there are still two set of constraints while only the longitudinal
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degrees of freedom need to be eliminated. Are our constraints too strong? The answer

is no, because we have used the assumption that hσσ is independent of σ, which imposes

another constraint. If we re-introduce hσσ as an arbitrary function of σ, the counting of

degrees of freedom will be correct.

Define the occupation number ni
m = ai

−m ai
m, and the level n =

∑

m,i m ni
m, and

similarly for ñ. Then the vanishing of (3.1) on physical states is just the level matching

condition n = ñ. Note that the condition (3.1) is also the translational invariance condi-

tion along σ. We can make a linear transformation to define another set of creation and

annihilation operators,

Ai
m = αm ai

m + βm ãi
−m, Ãi = α̃m ãi

m + β̃m ai
−m , (3.4)

|αm|2 − |βm|2 = |α̃m|2 − |β̃m|2 = 1 , (3.5)

αmβ−m = α̃mβ̃−m . (3.6)

The conditions (3.5) and (3.6) ensure that the new operators satisfy the same commutation

relation as (2.18). The above transformaion may be viewed as Bogoliubov transformation

on the world-sheet. The most general form is

αm = cosh(γm) eiδm+iφm, α̃m = cosh(γm) eiδm+iψm , (3.7)

βm = sinh(γm) eiφm , β̃m = sinh(γm) eiψm . (3.8)

where γm, φm, ψm and δm are real. Constraint (3.1) remains the level matching con-

dition, but now in terms of the new occupation number operator N = Ñ , defined by

N =
∑

i,m mN i
m, and N i

m ≡ Ai
−m Ai

m, and similarly for Ñ .

We now choose the parameters γm and δm properly to diagonalize the constraint (3.2).

The conditions are

cosh2(γm) + sinh2(γm) =
ω

2m λm
[(

η̇

η
)2 + λ2

m +
m2

ω2
] , (3.9)

sinh(2γm) =
ω

2m λm
[(

η̇

η
− iλm)2 +

m2

ω2
] e−2i

R

t du λm(u)−iδm (3.10)

where δm is chosen to make sinh(2γm) real, and this can be done.

In terms of the new creation and annihilation operators

H = −ω2

4
+

(pi)2

4e2Ht
+

∑

m>0,i

m

2
(N i

m + Ñ i
m + 1) (3.11)

' −ω2

4
+

(pi)2

4e2Ht
+ N +

E0

2
' 0 , E0 = −1

4
.

The fact that we need to form a Bogoliubov transformation implies that if we start with

a state constructed by the original operators ai
m, there will be mode creation along the

string at a later time.

We now discuss implication for dynamics of fields viewed as coefficients in the expansion

of a general string state.
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Since ∂i is a Killing vector, pi is conserved, and we will just work in momentum

representation. Any physical state should satisfy the constraint H = 0, and can be

expanded in terms of common eigenstates of the occupation number operator N i
ms, Ñ i

ms,

pi as well as ω. That is,

|φ >=
∑

N1

1
,Ñ1

1
,......N i

m,Ñ i
m,......

|N1
1 , Ñ1

1 , . . . . . . N i
m, Ñ i

m, . . . . . . .ω, pi > φ(N i
m, Ñ i

m, ω, pi) , (3.12)

where the eigenvalues labeling the states must satisfy the relation −ω2+ (pi)2

e2Ht +2(2N+E0) =

0, and N = Ñ .

When writing down the action for the above general state, it is important to keep

in mind that the inner product involves an integral over space so there is a nontrivial

Hermticity condition. For instance, we consider a scalar particle with mass m, whose wave

function must satisfy

(¤ − m2)φ(x) = [−∂2
t − 3H∂t + e−2Ht(∂i)2 − m2]φ(x) = 0 . (3.13)

Written in momentum representation, the last two terms are −e−2Ht (pi)2 − m2 = −E2,

where E is the comoving energy.

In string field theory, we assume that the action of string state has the form of

S =

∫

dt < φ|∂2
t + 3H∂t + E2 + λH |φ > (3.14)

where λ is the Lagrangian multiplier. In writing down this action, we have only consid-

ered the mass shell condition and have omitted other constraints corresponding to the

positive Fourier modes. To treat the problem more rigorously, one should introduce more

Lagrangian multipliers. From this action, we can easily get the evolution equation of the

string state. By variation of |φ >, we have

(∂2
t + 3H∂t + E2)|φ >= [∂2

t + 3H∂t + e−2Ht (pi)2 + 2(N + Ñ + E0)]|φ >= 0 . (3.15)

This equation contains an unphysical component which is to be discarded due to the

fact that in the action the inner production automatically projects out the unphysical

component by imposing the constraint H |φ >= 0.

We explain some subtleties in deriving this second order equation. Because of the non-

flat metric, the measure of the integral volume is d~x3
√
−G = d~x3e3Ht, so the inner product

should be defined as
∫

d3xe3Htφ(x)∗φ(x). With this inner product, ∂2
t is not Hermitian. To

get a Hermitian operator, we should replace ∂2
t with ∂2

t + 3H∂t. There is no addition term

caused by polarization indices since all the creation operators are properly normalized.

Now, different excitation modes of the string correspond to different particles in space-

time, thus the coefficient φ(N i
m, Ñ i

m, ω, pi) is the wave function of single particle. From now

on, we will use notation |N i
m, Ñ i

m, ω, pi > instead of |N1
1 , Ñ1

1 , . . . . . . N i
m, Ñ i

m, . . . . . . .ω, pi >

for simplicity. Since the basis |N i
m, Ñ i

m, ω, pi > evolves with time, this dependence on time

will be transmitted into the equation of motion for φ through the action of ∂2
t + 3H∂t .
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Using the differential equation for ai
m and ãi

m, (2.14), and the definition of Ai
m, Ãi

m, we

have

Ȧi
−m = cm Ãi

m + dm Ai
−m, ˙̃Ai−m = c̃m Ai

m + d̃m Ãi
−m , (3.16)

cm = ei(φ−ψ)

{

α∗
mβ̇∗

m − β∗
mα̇∗

m + [α∗2e−2i
R

t duλm(u) − β∗2e2i
R

t duλm(u)]
λ̇m

2λm

}

= e(−iδ−iφ−iψ)H
∂t

ω̇
2ω − i2m

ω (H + ω̇
2ω )

√

(2m
ω )2(H + ω̇

2ω )2 + [∂t(
ω̇
2ω )]2

, (3.17)

c̃m = ei(ψ−φ)

{

α̃∗
m

˙̃β
∗
m − β̃∗

m
˙̃α
∗
m + [(α̃∗)2e−2i

R

t duλm(u) − (β̃∗)2e2i
R

t duλm(u)]
λ̇m

2λm

}

= e(−iδ−iφ−iψ)H
∂t

ω̇
2ω − i2m

ω (H + ω̇
2ω )

√

(2m
ω )2(H + ω̇

2ω )2 + [∂t(
ω̇
2ω )]2

, (3.18)

dm = ei(φ−ψ)

{

α̃mα̇∗
m − β̃mβ̇∗

m +
˙λm

2λm
[α̃mβ∗

me2i
R

t du λm(u) − α∗
mβ̃me−2i

R

t du λm(u)]

}

= i
H + ω̇

2ω

2λ2
m(2m2

ω2 − ∂t
ω̇
2ω − 2m

ω λm)

{

4Hm

ω
λ2

m + λm

[

∂2
t

ω̇

2ω
+ 2

(

H +
ω̇

2ω

)

∂t
ω̇

2ω
+

4m2

ω2

ω̇

2ω

]}

−iφ̇ , (3.19)

d̃m = ei(ψ−φ)

{

αm
˙̃α
∗
m − βm

˙̃
β
∗
m +

˙λm

2λm
[αmβ̃∗

me2i
R

t du λm(u) − α̃∗
mβme−2i

R

t du λm(u)]

}

= i
H + ω̇

2ω

2λ2
m(2m2

ω2 − ∂t
ω̇
2ω − 2m

ω λm)

{

4Hm

ω
λ2

m + λm

[

∂2
t

ω̇

2ω
+ 2

(

H +
ω̇

2ω

)

∂t
ω̇

2ω
+

4m2

ω2

ω̇

2ω

]}

−iψ̇ .

Note that |cm| = H. We can choose φ and ψ to set dm = d̃m = 0, and then the phase of

cm is also fixed.

The eigenstates of N i
m and Ñ i

m are just Πm,i(A
i
−m)N

i
m(Ãi

−m)Ñ
i
m |Ω, ω >, where |Ω, ω >

is defined as Ai
m|Ω, ω >= 0, Ãi

m|Ω, ω >= 0 for all m, i. From Ȧi
m |Ω, ω > +Ai

m ∂t|Ω, ω >=

0, we get

∂t|Ω, ω >= −
∑

m,i

c∗m Ai
−m Ãi

−m|Ω, ω > , (3.20)

and

∂t|Nk
n , Ñk

n , ω >=
∑

m,i

[cm Ai
m Ãi

m − c∗m Ai
−m Ãi

−m]|Nk
n , Ñk

n , ω > , (3.21)

∂2
t |Nk

n , Ñk
n , ω >= −

∑

m,i

|cm|2 (1 + 2N i
m Ñ i

m + N i
m + Ñ i

m)|Nk
n , Ñk

n , ω > , (3.22)

+{−
∑

m,i,l,j

2 cm c∗l Ai
−l Ã

i
−l A

j
m Ãj

m +
∑

m,i

ċm Ai
m Ãi

m −
∑

m,i

ċ∗m Ai
−m Ãi

−m (3.23)

+
∑

m,i,l,j

[cl cm Ai
l Ã

i
l Aj

m Ãj
m + c∗l c∗m Ai

−l Ã
i
−l A

j
−m Ãj

−m]}|Nk
n , Ñk

n , ω > , (3.24)
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ω̇|Nk
n , Ñk

n , ω >= −Hp2e−2Ht

ω
|Nk

n , Ñk
n , ω > , (3.25)

Ṅ + ˙̃N =
∑

m,i

2m(cm Ai
m Ãi

m + c∗m Ai
−m Ãi

−m) . (3.26)

From the explicit expression above, we see that the off diagonal parts of ∂t|N, Ñ , ω > and

∂2
t |N i

m, Ñ i
m, ω > are unphysical if |N i

m, Ñ i
m, ω > is physical. So the off diagonal part is

orthogonal to physical states.

Just considering the physical part of the following equation

{∂2
t + 3H∂t + (pi)2 e−2Ht + 4N + 2E0}|φ >= 0 ,

we have

{∂2
t + 3H∂t + (pi)2 e−2Ht + 4N + 2E0

−
∑

m,i

H2 (1 + 2N i
m Ñ i

m + N i
m + Ñ i

m)}φ(Nk
n , Ñk

n , ~p) = 0 . (3.27)

The above equation is the main result of this note. We see that in addition to the term

4N , there is an additional term which is quadratic in creation numbers with a prefactor

H2. This term could become comparable to the linear term N for a fixed H2 (measured

in the string unit since we have set α′ = 1). Restoring the string scale Ms, we find that

the new term is comparable to the old term M2
s N when N ∼ M2

s /H2. This is of course a

large number during inflation because H is much smaller than the string scale, if we hope

that an effective field theory is valid.

This quadratic term is negative when viewed as a contribution to the mass squared

m2, thus it appears possible to have an effective negative mass squared if the quadratic

term becomes dominating. This will never become possible, since in our approach so far

we have assumed real λm in the mode expansion (2.14), and we are dealing with “small”

strings mostly oscillating in time. It can be checked that as long as the real condition

on λm is met, the quadratic term in (3.27) will never make the mass squared negative.

Nevertheless, the fact that this term reduces the mass squared comes as a surprise. We

may just imagine that this is a quantum effect for a highly excited state due to the mode

creation on the string. We leave a discussion on mode creation to the appendix.

4. Comparison with earlier results

The spectrum we get is

α′M2 = 4N + 2E0 −
∑

m,i

H2 (1 + 2N i
m Ñ i

m + N i
m + Ñ i

m), (4.1)

which can be read from (3.27). The previous result obtained by the method of [1] is

α′M2 = 24
∑

n>0

2n2 − H2M2α′2
√

n2 − H2M2α′2 + 2N
2 − H2M2α′2
√

1 − H2M2α′2 , (4.2)
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where we cite the formula in the form appearing in [2], and the dimensionality of the

spacetime is 25 there. We can see that when H = 0, both results return to the flat

spacetime spectrum, 4N +zero point energy. The difference between the zero point energy

is due to the different dimensionality. When H 6= 0, both results have a term proportional

to H2, but the coefficients are different. What’s more, our result shows that the spectrum

depends not only on the level N , but also on the specific excitation. This difference

may due to the gauge choice of the two approaches. As we have mentioned before, we

fix the worldsheet time τ , set the determinant of the worldsheet metric to be one, set

one component of the worldsheet metric h12 = 0, and leave another worldsheet metric

component hσσ unfixed. To set the determinant of the worldsheet metric to be one, we

have used the classical conformal symmetry of the action, which does not exist in the whole

theory. While in the earlier approach, for example, [1], they choose the conformal gauge and

leave the worldsheet coordinate τ unfixed. Since there is no conformal symmetry, there is

no guarantee that we should get the same result. The other approach previously developed

in [2], namely, the semiclassical quantization, also take the same conformal gauge, and make

a circular string ansatz, and then they propose a quantization condition. The spectrum

is α′m2 ≈ 5.9n, n ∈ N0 in [2]. In [2], the authors compare this result with that obtained

in [1] by calculating the maximum excitation number of string states in de Sitter spacetime.

In [1], the maximum number of a single excitation is Nmax = 0.15
H2α′

, which obtained in [2] is

Nmax = 0.17
H2α′

. In our approach, the condition for the state to oscillate is λ2
m ≥ 0. Together

with (3.12), we will get roughly Nmax = 0.25
H2α′

for all the oscillating modes to have real

frequency. Our result is slightly larger than the previous results. One possibility is that

our solution is more general than the previous ones. For instance, in [2], only circular

solutions are considered, and in [1], only expansion around an exact solution is considered.

While here in our paper, only one approximation is made, namely, the worldsheet metric

hσσ does not depend on σ. Thus we might have found more solutions.

5. Discussions and conclusion

In this paper, we first quantized a general oscillating string in a de Sitter space , with the

only approximation that hσσ depends only on time. This quantity becomes the energy

density along the string after we impose constraint condition on it. So our approximation

amounts to averaging the energy density along the string. Aside from this, our treatment

is exact.

Apparently, our main result (3.27) differs from the old result by a negative contribution

to the mass squared of the string. This term which is quadratic in oscillation numbers

increases quickly when we consider more highly excited states. Applying this result to

inflation, there is virtually no physical effect during inflation except for modification of the

mass spectrum, for this new term depends only on the Hubble constant thus remains a

constant for a given state. It is a well-known result that for a particle of constant mass,

there is no particle production during inflation. Although we have worked with a constant

Hubble constant, some of our results can be generalized to a non-constant Hubble constant.

We expect string creation in the end of inflation can be induced by this new term , for the
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Hubble constant is no longer a constant in this short reheating period . A similar effect

is discussed in [7] and [8] except for ad hoc coupling to some moduli. We leave a detailed

investigation of string creation to a future work [9].

In this paper we have restricted attention to “small” string states, namely strings with

oscillating modes only. It can be expected that the phenomenon of string mode creation

and its induced effects on the equation of motion prevails for the long strings which stretch

with the expansion of the universe. Again, detailed result will be presented in [9].

We also expect the new term we discovered will have some effects for cosmic strings

at later times.
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A. Mode creation

To investigate the question of mode creation, we need to consider the expectation value

of the occupation number operator on a state that does not change with time, that is,

the eigenstates of the time independent number operator. Because Ȧi
±m and ˙̃A

i

±m do not

vanish, the corresponding number operators N̂ and ˆ̃N depend on time. Thus we need to

find a set of creation and annihilation operators bi
m and b̃i

m, s.t. ḃi
±m = ˙̃b

i

±m = 0. bi
±m and

b̃i
±m are linear combinations of Ai

±m and Ãi
±m. As we have mentioned under (3.4), the

most general form of linear transformation preserving the commutation relation is to set

bi
m = cosh(γ′

m)eiφ′

m+iδ′mAi
m + sinh(γ′

m)eiφ′

mÃi
−m , (A.1)

b̃i
m = cosh(γ′

m)eiψ′

m+iδ′mÃi
m + sinh(γ′

m)eiψ′

mAi
−m . (A.2)

Demanding that

ḃi
m = [i(φ̇′

m + δ̇′m) cosh(γ′
m)eiφ′

m+iδ′m + γ̇′
m sinh(γ′

m)eiφ′

m+iδ′m + cm sinh(γ′
m)eiφ′

m ]Ai
m (A.3)

+[iφ̇′
m sinh(γ′

m)eiφ′

m + γ̇′
m cosh(γ′

m)eiφ′

m + c∗m cosh(γ′
m)eiφ′

m+iδ′m ]Ãi
−m = 0 ,

˙̃b
i

m = [i(ψ̇′
m + δ̇′m) cosh(γ′

m)eiψ′

m+iδ′m + γ̇′
m sinh(γ′

m)eiψ′

m+iδ′m + cm sinh(γ′
m)eiψ′

m ]Ãi
m (A.4)

+[iψ̇′
m sinh(γ′

m)eiψ′

m + γ̇′
m cosh(γ′

m)eiψ′

m + c∗m cosh(γ′
m)eiψ′

m+iδ′m ]Ai
−m = 0 .

Then we have

γ̇′
m + <(cme−iδ′m) = 0 , (A.5)

δ̇′m + [tanh(γ′
m) + coth(γ′

m)]=(cme−iδ′m) = 0 . (A.6)

Suppose that at time t = t0, the two sets of operators are identical, e.g. bi
m = Ai

m(t0), b̃i
m =

Ãi
m(t0). Then the Hilbert space spanned by eigenstates of N ′ ≡ bi

−mbi
m and Ñ ′ ≡ b̃i

−mb̃i
m

is identical with that of N̂(t0) and N̂(t0). Thus we have the initial condition γ′
m = δ′m = 0.
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Denote |to > a state that does not change with time, then < t0|N̂(t)|t0 > represents the

change of the total mode number.

< t0|Ṅ + ˙̃N |t0 >= −
∑

m,i

2mH sinh(2γ′
m) cos(δ′m)(N i

m + Ñ i
m + 1) . (A.7)

When ~p = 0, both the real part and the imaginary part of cm is pure oscillating, so the

average of γ̇′
m and δ̇′m vanish, with the initial condition, we will have γ′

m ≈ δ′m ≈ 0. Then

< t0|Ṅ |t0 >≈ 0.
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